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Method of Synthesizing -Nonuniform W aveguides

KONRAD GRUNER

Abstract—A method is proposed for the synthesis of continuous
nonuniform waveguides with rectangular cross section so that they
show desired electromagnetic. properties for discrete frequencies
when excited by the TE,, mode. Starting from a uniform structure
with known properties, the shape of the nonuniform waveguide is
attained step by step by small systematic deformations.

To show the feasibility of the method proposed, the mathematical
formalism and numerical results are presented for reactive one-ports
and filters with simple properties. In these cases, the problem is
reduced to the solution of an equivalent resonator problem, i.e.,
a nonuniform waveguide resonator is developed for which a certain
set of resonance modes occur at desired frequencies.

I. INTRODUCTION

A. General Aépects

NONUNIFORM waveguides can be used for the
solution of transfer problems in microwave circuits.
In this paper, the case of nonuniform waveguide is con-
sidered, where the cross section varies continuously along
the waveguide. Compared to a nonuniform waveguide of
equal length but only discrete discontinuities, the con-
tinuous configuration is superior with regard to band-
width, loss, and high-power throughput.

As of this date, no method of synthesizing this type
of nonuniform waveguide (in contrast to nonuniform
TEM transmission lines) has been described in literature
available to the author. The topic could therefore be of
more general interest. This paper presents a short sum-
mary of [17]. It is, of course, impossible to take all the
detailed problems solved in the above-mentioned reference
into consideration. It should be pointed out that, in the
meantime, further applications of the general synthesizing
principle have arisen which cannot, however, be dealt
with in this paper.

B. The General Synthesizing Principle

The method of solution is an iterative procedure that
may be deseribed in the following manner: the starting
point is a waveguide which is uniform. In this case it is
simple to compute its electromagnetic properties. The
nonuniform waveguide with the desired properties is now
approached step by step by small systematic deformations
of the walls of the waveguide. This yields a linear relation-
ship between the change of the structure and the change
of its properties for each incremental step (¢ — 1 — 7).
The mathematical formalism necessary for each step can
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be obtained by first-order perturbation theory. On the
other hand, it is possible to use immediately well-known
expressions for resonance frequency or input impedance,
power consumption or other physical quantities, ex-
pressions which normally are used to determine the
properties of waveguide structures by means of the
variational method.

Prior to going into mathematical detail, it is necessary
to make some basic assumptions.

C. Basic Assumptions

1) Only one kind of nonuniform waveguide is con-
sidered. Tt is of rectangular cross section and is com-
pletely described by a “characteristic longitudinal section”
F and the width A as shown in Fig. 1(a).

2) The frequency band and the dimensions of the cross
sections @y, Q. at either end of the waveguide (the cross
sections of the uniform waveguide junctions) are chosen
such that only the TE; mode [Fig. 1(b) and (¢)] can
excite the structure. In this case, the components of the
electromagnetic field versus the coordinate w are pro-
portional to cos ((w/A) w), sin ((x/A) w) [Fig. 1(b)]
or else are constant [Fig. 1(¢) 1.

3) The frequency band, the dimensions of the cross
sections @, @, and the shape of the physical transitions
are chosen such that higher modes (TEy, TMy, ---
TEy,, TMy,, and TEy -+ TE,.,, respectively) excited
inside the nonuniform structure can be neglected on
account of their aperiodic attenuation at @i, @s. Thus the.
nonuniform structure is equivalent to .a linear two-port.
If there is a shortcut in the eross section @, the structure
is equivalent to a linear one-port.

4) Losses in the nonuniform waveguide and the medium
are neglected. The medium is taken to be isotropic with a
dielectric constant ¢ and a permeability constant . .

D. Basic Field Relationships

In the past, nonuniform waveguides of this type have
been analyzed in detail [2]-[4]. By the selection of the

”' characteristic N
longitudinal
section F
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Fig. 1. Fundamental structure of the nonuniform waveguide to be
synthesized and admissible excitations.
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particular fundamental structure and its excitation it is
possible to reduce the three-dimensional problem to a
two-dimensional problem by separation of the coordinate
w in Fig. 1(a). The domain of definition of the reduced
wave equation is now the longitudinal section F. In order
to simplify the formulation of the boundary conditions, a
suitable curvilinear coordinate system is introduced in F.
This is performed by conformal mapping of the rectangular

F' in the z plane to the longitudinal section F in the w

plane as shown in Fig. 2. In principle, the computation of
the complete electromagnetic field is now possible after
solving a general wave equation for a scalar function

¢ (z,y):

¢ (z,y) n ¢ {(x,y)
a2 oyt

+ vf(xy)o(z,y) =0 (1)

taking into account the simplified boundary conditions at
the limits of the domain of definition which is now F or F’.

In (1),
2
v = weomo — (%) (2)
for an excitation as shown in Fig. 1(b), and
v = «Peto (3)

for an excitation as shown in Fig. 1(c).

The funetion f(a,y) describes the nonuniform structure
completely. Mathematically, f(x,y) is the deformation of
the infinitesimal area de’ when transferred to do (Fig. 2):

do = f(z,y) do’. (4)
f(x,y) must satisfy the equation [1]
[ (f(=y))] i #[n (f(zy))] _ 0 5)

dx? 9y?

because the real and imaginary components of the cor-
responding conformal mapping function have to satisfy
the differential equations of Cauchy and Riemann.

If a uniform rectangular waveguide (longitudinal
section F’, width A) is filled with a nonuniform medium
which, in case of an excitation corresponding to Fig. 1(b),
also is an anisotropic medium, the same type of general
wave equation is obtained. Therefore, a physical inter-
pretation may also be given for f(x,y) [2]-[4].

After the general introduction to the fundamental
equations of the nonuniform waveguides, the mathe-
matical formalism for the process of synthesis itself must
be considered. In order to demonstrate the feasibility of
the method, only nonuniform waveguides with a relatively
simple behavior are treated in this paper, such as reactive
one-ports or bandpasses [1].
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Fig. 2. Introduction of a curvilinear coordinate system in the

characteristic longitudinal section F by conformal mapping.
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II. FEASIBILITY OF THE METHOD FOR STRUCTURES WITH
SiMprLE ELECTROMAGNETIC BEHAVIOR

As shown in Section I1I, the problem is reduced to the
solution of an equivalent resonator problem, i.e., a non-
uniform waveguide resonator is developed for which a
certain set of resonance modes occur at desired frequencies
or eigenvalues {v,}. Ideal short circuits or open circuits
at both ends of the nonuniform waveguide structure form
a resonator. Now the problem is to synthesize such
resonators. The starting point is a uniform waveguide with
a known resonance mode spectrum. The TEy, modes are
of interest. The corresponding eigenvalues must be dis-
placed step by step towards the desired values. It is not
necessary to influence the higher order modes in the same
way because their effect on the behavior of the nonuniform
waveguide can be neglected in the considered frequency
band if the following conditions are satisfied.

1) A series expansion of the corresponding fields in the
cross sections @y, @ yields only small TE; components.

2) The resonance frequencies corresponding to the
modes developed from the TEy;, TMiy, and TEy modes,
respectively, are outside the considered frequency band.

The process of synthesis is only possible by means of a
computer because ten steps or more are required to get to
the desired nonuniform structure. A simplified flow chart
of the computer program is shown in Fig. 3.

A. Mathematical Formalism of the Process of Synthests

Regarding (1) and the corresponding boundary con-
ditions which are now only of a Dirichlet or Neumann
type, a solution for an inverse eigenvalue problem must
be found which is the function f(z,y) derived from a
known set of eigenvalues {vi,7v2 *** vpm}. To get to alinear
relationship between the incremental correction of the
eigenvalues and the changes of the longitudinal section
Fi_y for each step %, it is necessary to consider neighboring
statuses ¢+ — 1, ¢ for the functions which describe the
nonuniformities, the sets of corresponding eigenvalues,
and the systems of corresponding eigenfunctions:

fia(xy) — fi(z,y)
Vit = {vin!
{¢i_1117} - {d)i,p}; 7 = 1,2 “ e

p=12:pn

(6)

From the general wave equation (1) the following ex-
pression can be derived for each function f.(z,y) :

_ Pe(zy) 62¢(x,y)) ,
4/F, ¢(x,y)( o9 6y2 do

Y= - ’
[ r@weey
7!

1= 1,2:0 0,

()

It is well known that v is a stéttionary value v = v,
whenever ¢(z,y) is an eigenfunction ¢,,,(z,y). Therefore,
if the eigenfunction ¢;_1,(z,y) is used as a trial function,
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'begin'

homogeneous resonator

synthesis of a resonator vhose prime
resonance frequencies are displaced
incrementally in the direction of the
desired resonance frequencies
analysis of this resonator

has the desired
spectrum been reached

within predetermined

tolerances ¢

pPlot the longitudinal
section of the computed
resonator

'end'

Fig. 3. Simplified flow chart of the computer program.

¥..,» 18 given with an error of second order:
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Pmts—1
Jzy) = fa@) L+ 3 ibh(zy)  ©)
where
fO(Z)y) =1
0,(2,y) = cosh [%’E/I (y - 1_;:)] cos <2§;,.- x)

1= 1,20

is typical. The functions 6,(z,y) satisfy the potential
equation.

For the computation of the unknown coefficients
6f..», both (8) and conditions of the form

Z1,%
ro= [ AT de) (10)
20,¢
with
i=120vin  L=1,ees
7'i,1 =Bi T’im,l =B T2 _—"L, Tim,zzL"'

must be satisfied. In order to make sure that f;, (z,y)
satisfies (5), (9) becomes

Pmts—1
flmy) =fialey) exp [ X 8fpbp(zy)].  (11)
p=0 ,
Equation (11) is only correct for
Pmts—1
2 fubp(zy) K1,  inF’ (12)
p=0

which means in the case of a small displacement of the
eigenvalues stepping on from ¢ — 1 to <.

After the function f;(z,y) has been obtained, it is
necessary to compute the corresponding eigenfunctions

ox® dy?

F!

2 2
/ ¢z—1,p($;y)<'— g ¢z—1,p($,y) — g ¢‘—1v1’(x7y)) do’

Vi =

/ Fl@y) dr,t(zy) do’
P!

If the function f.(x,y) were known (case of analysis),
(8) yields a very good approximation for the exact eigen-
value. Vice versa, if a set of eigenvalues is required (case
of synthesis), (8) can be considered as a functional
equation for the computation of the unknown function
fi(z,y).

To get a system of linear equations, a suitable series
expansion for f;(x,y) is needed with a definite number of
free parameters or coeflicients. First, this series expansion
must satisfy (5). Further, it must result in a smooth
transition to the cross section of the homogeneous wave-
guide junctions at the ends of the nonuniform waveguide.
Finally, a number s of free parameters must be reserved,
to get, for instance, a resonator with a certain length L
and a certain height B at the ends or at half-length.

For the computation of f.(x,y) an expression

(8)

{¢.,] because they are needed for the computation of
fir1(z,y). That may be done by using variational tech-
niques (method of Ritz) which means utilizing the
stationary character of v in (7) when ¢(z,y) is an eigen-
funetion. Double Fourier series which satisfy the boundary
conditions are introduced in (7). The derivations with
respect to the unknown coefficients of the Fourier series
lead to a matrix eigenvalue problem. A solution is found
by the method of Wielandt [5] utilizing the fact that the
eigenfunctions {¢.,} and eigenvalues {v,,,} are good
approximations.

To get the outline of the final longitudinal section
F;,, only a solution of an ordinary first-order differential
equation for a certain initial value must be found. A
modified method of Euler—-Cauchy is used [5].

A computer program (ALGOL) containing the formalism



320

deseribed in this section was written to obtain numerical
results.
II1. NUMERICAL RESULTS

An excitation of the nonuniform structure is assumed
only as shown in Fig. 1(b). In order to save computer

time and computer storage, only structures with a par-

ticular symmétry as shown in Fig. 2 were synthesized.
In that case, the matrix equation of the eigenvalue prob-
lem is split up into four matrix equations (two of which are
needed). The order of the matrices is thus reduced to a
quarter of the original. The regions of integration in
(7) and (8) are also reduced to a quarter. The conditions
as in (10) may or may not be predefined.

The method was tested with a great number of ex-
amples. A great deal of experiences were gathered. The
results were checked by methods given in literature or by
actual measurements. The results were found to be in good
agreement.

On account of the chosen series expansion for fi(z,y) it
was not possible to influence the eigenvalues of the same
order for the open- and the short-circuit case inde-
pendently of one another. In this case, a singular matrix
was obtained, when the coefficients §f;,, should be com-
puted. In the same way, for some examples when both
height B and length L of the longitudinal section F were
preset, the method did not yield meaningful results. With
length L as a free parameter, the process of synthesis was
successful. There were no problems with a poor con-
vergence of the eigenfunctions because the nonuniformity
is always continuous. The nonuniformity is very critical
if the longitudinal section F shows a tight pinch. In this
case, the conformal mapping of the outline of the rec-
tangular F’ to the outline of the longitudinal section F
automatically produces a great number of points in the
critical region as shown in Fig. 4. On the other hand, it
could also be observed that the conformal mapping was not
upique for other examples of this type. The outline de-
seribed a noose, which could be avoided by reducing the
B/L ratio.

Now some characteristic examples are presented. In
order to differentiatc the eigenvalues in the short-circuit
case and in the open-circuit case the letters K and L
are used, respectively, instead of . Longitudinal sections
shown are not in full scale.

At first, resonators were synthesized without thinking
of their application. Txamples where two, four, and six

3 & s /F
o F' : : ’ *
4
B lz!tsl1l!|oillzl¥|5
2 w0\
S2
L2

ivliv

O——o= X/U

Fig. 4. Correlation of points on the outlines of F’ and F by the
conformal mapping.
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eigenvalues of the short-circuit case were desired could be
treated successfully.

Fig. 5 shows the step by step approximation of a par-
ticular longitudinal section F. In this case, certain values
for only two eigenvalues K1 and K2 are desired. The
initial values for K1 and K2 correspond to the THyy
and TEye resonances, respectively, of the uniform wave-
guide resonator with the longitudinal section F'. For
K1 and K2 a displacement of —45 and 430 percent,
respectively, was required. In Fig. 6 the step by step ap-
proximation of the desired eigenvalues is shown. In
Table I at first the desired incremental displacements in
percent are given for each step and then the corresponding
errors in percent when the desired eigenvalues are com-
pared with the real (computed) eigenvalues of the new
structure. These errors are always much smaller than the
desired displacements. In this example, at first the eigen-
value K1 and then the eigenvalue K2 was displaced. This

Fig. 5. Step by step approximation of a characteristic longitudinal
section F.

niemi2] " K2

lo initial valves

X desired valves

) 1 1 3 1 § ] 7 ] 9 LI | S S K N (S ]
t - step i

Fig. 6. Step by step approximation of the desired eigenvalues.

TABLE 1
ACCURACY OF THE METHOD DURING THE STEP BY STEP
APPROXIMATION

I|2[314L5|517|8|9|10|11112113114115

desired displacement of the ecigeavalues for step 1=1-wi

in percent

-4 |-26]-51]-45]-76]-7 [Fur}-0f-27]-03[-0¢] 0 [ e [0 ] o
olololofojo|s|n|s|s]z

devigtion of the real eigenvalves from the
eack step in percent

24015 [-01]-02[- o ]-0351-03 |-12 |- a9 03z 0ps| oo3f-op4} opsf om| op3
016 | 0p3[-012}-013 {-o0s| ao1{ oo o35 ]-ore]-02 [-009

-
z
=
=

desired eigenvalues for

|\
AN

5
o
5
8
Cad
=
w
[—]
3




GRUNER: SYNTHESIZING NONUNIFORM WAVEGUIDES

Fig. 7. Fundamental structure of a waveguide resonator for the
synthesis of a reactive waveguide one-port.
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Fig. 8. Example for the synthesis of a reactive waveguide one-port.
fv = 1.43 GHz; By = 0.300f /fy cm—'; Z;, = B+1207x @; LH = 13.12
em; B = 2.22 ecm.

is a method to avoid a singularity when a particular
length I and height B is required.

Example two is the synthesis of a reactive waveguide
one-port. In principle, a waveguide resonator as seen in
Fig. 7 had to be synthesized. The identical nonuniform
structures at both ends are the desired one-ports which
are connected by a uniform waveguide (propagation
constant By, characteristic impedance Z;, width A,
length LH) to obtain a resonator which will be computed
as previously explained.

The solid curve in Fig. 8(a) shows the normalized input
reactance z. of a network corresponding to Fig. 8(b) to
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Fig. 9. Step by step approximation of the resonance spectrum of
a bandpass filter.

be modeled in a waveguide one-port. For a given LH
and A [compare (2)] taken to be infinite, the eigenvalues
K1 --- K4 of the desired resonator are obtained by means
of the dashed curves in Fig. 8(a).

The resonance conditions are

_ LH - LH
. = cot <60 7) and T. = — tan (ﬁo 7) (13)

In that way, the function z. desired is obtained at dis-
crete frequencies corresponding to the eigenvalues K1 --
K4. The density of the discrete frequencies depends on the
length LH. Here, a series expansion somewhat modified
as compared to (9) was used. A structure as shown in
Fig. 8(c) was obtained. The electrical equivalent eircuit
of this structure agrees with the network in Fig. 8(b).
A nonuniform waveguide one-port with the same longi-
tudinal section was built and the input reactance z, was
measured. The relative agreement with the curve required
is very good for lower frequencies, where the effect of
higher modes (TEjy, TMy;) in the plane of definition of
Z, can be neglected. The conversion of the results to the
values shown in Fig. 8(a) was performed by a simple
frequency transformation which can be derived from (2):

1\ 1
fA»w2 = fA2 - (—> .

14
24 €oMo ( )

Example three is the ‘synthesis of a bandpass filter.
In Fig. 9, the gradual approximation of the desired
resonance spectrum is shown. At first, eigenvalues of the
same order for the open- and short-circuit case agree.
For special symmetrical structures, the following rule is
valid [17]. Where the eigenvalues of the same order stay to-
gether (K1, L1 and K3, L3), a passband is obtained, where
they diverge (K2, L2 and K4, L4), a stopband is obtained.
The structure which belongs to the desired values can be
seen in Fig. 10. It is comparable with a capacitive-iris
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Fig. 10. Characteristic longitudinal section F of the bandpass
filter developed.

coupled waveguide filter. At this example, it turned out
that it was not possible to influence the eigenvalues of the
same order for the open- and short-circuit case inde-
pendently of one another. Therefore, they were influenced
alternately.

The structure shown in Fig. 10 was analyzed by means
of a stepped waveguide using formulas given in [67]. The
location of the passbands was in very good agreement with
the required values.

In the same way as just deseribed, low passes and high
passes were synthesized. \

IV. ConNcLUsION

A general principle for synthesizing nonuniform wave-
guides with desired properties was described. The method
is an iterative one. The application of the method was de-
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seribed for one kind of nonuniform waveguide with
rectangular cross section and excited by a TE, mode.
Simple examples have proved the feasibility of the method.
Some experience for a successful adaptation of the method
were given. In general, the method can be adapted to more
complicated problems, e.g., matching problems. A cor-
responding computer program is under test.
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Short Papers

Tabulation of Methods for the Numerical Solution of the
Hollow Waveguide Problem

FOOK LOY NG

Abstract—A comparison of methods for the numerical solution
of the hollow waveguide problem is presented in tabular form.
Another table lists waveguide shapes and their cutoff characteristics
that have been presented in the literature. These tables and the
bibliograppy afford an aid towards the selection of a method.

INTRODUCTION

Consider a uniform waveguide with perfectly conducting walls.
For the propagation of monochromatic electromagnetic waves in-
side the waveguide, Maxwell’s equations reduce to the two-dimen-
sional Helmholtz equation (1, sect. 8.17].

All analyses of the hollow waveguide problem are attempts at
solving, exactly or approximately, the Helmholtz equation subject
to the imposed Dirichlet or Neumann boundary conditions for
E modes (TM) or H modes (TE), respectively [1, ch. 87.
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Many numerical methods have been proposed and used for the
solution of the waveguide problem. A commentary on and com-
parison of the methods together with relevant references are given in
this short paper. A table of the methods and their chief characteristics
are presented for convenient reference. Another table is given listing
the waveguide shapes that have been treated in the litérature. This
ig provided as a handy reference of shapes that can be used for the
testing of any numerical method. This short paper is a condensed
version of an earlier publication appearing in a journal with limited
circulation [2].

A general introduction to numerical techniques and a review of
finite difference and variational techniques for electromagnetic
problems are given by Wexler [3]. A review of some current numer-
ical methods for the solution of the waveguide problem is given by
Davies [47], and he establishes certain criteria as a basis for com-
parison of the various methods.

CoMPARISON OF METHODS

Waveguide shapes can be classified [5] into the three basie types
ghown in Fig. 1.

In general, type 3 is the most troublesome computationally
because of the singular behavior of the field at the reentrant corners
[6, sect. 9.2]. Most of the methods either suffer from a slower
convergence rate or do not produce reliable results for this type of
shape.

The methods that have been used are compared in Table I.
Some criteria established by Davies [4] for the comparison of



