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Method of Synthesizing Nonuniform Waveyides

KONRAD GR~NER

Abstrac&—A method is proposed for the synthesis of continuous

nonuniform waveguides with rectangular cross section so that they

show desired electromagnetic properties for discrete frequencies

when excited by the TEIO mode. Starting from a uniform structure

with known properties, the shape of the nonuniform waveguide is

attained step by step by small systematic deformations.

To show the feasibility of the method proposed, the mathematical

formalism and numerical results are presented for reactive one-ports

and filters with simple properties. In these cases, the problem is

reduced to the solution of an equivalent resonator probleq i.e.,

a nonuniform waveguide resonator is developed for which a certain

set of resonance modes occur at desired frequencies.

I. INTRODUCTION

A. General Aspects

N ONUNIFORM waveguides can be used for the

solution of transfer problems in microwave circuits.

In this paper, the case of nonuniform waveguide is con-

sidered, where the cross section varies continuously along

the waveguide. Compared to a nonuniform waveguide of

equal length but only discrete discontinuities, the con-

tinuous configuration is superior with regard to band-

width, loss, and high-power throughput.
As of this date, no method of synthesizing this type

of nonuniform waveguide (in contrast to nonuniform

TEM transmission lines) has been described in literature

available to the author. The topic could therefore be of

more general interest. This paper presents a short sum-

mary of [1]. It is, of course, impossible to take all the

detailed problems solved in the above-mentioned reference

into consideration. It should be pointed out that, in the

meantime, further applications of the general synthesizing

principle have arisen which cannot, however, be dealt

with in this paper.

B. The General Synthesizing Principle

The method of solution is an iterative procedure that

may be described in the following manner: the starting

point is a waveguide which is uniform. In this. case it is

simple to compute its electromagnetic properties. The

nonuniform waveguide with the desired properties is now

approached step by step by small systematic deformations

of the walls of the waveguide. This yields a linear relation-

ship between the change of the structure and the change

of its properties for each incremental step (i — 1 - i).
The mathematical formalism necessary for each step can
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be obtained by first-order perturbation theory. On the

other hand, it is possible to use immediately well-known

expressions for resonance frequent y or input impedance,

power consumption or other physical quantities, ex-

pressions which normally are used to determine the

properties of waveguide structures by means of the

variational method.

Prior to going into mathematical detail, it is necessary

to make some basic assumptions.

C. Basic Assumptions

1) Only one kind of nonuniform waveguide is con-

sidered. It is of rectangular cross section and is com-

pletely described by a “characteristic longitudinal section”

1’ and the width A as shown in Fig. 1 (a).

2) The frequency band and the dimensions of the cross

sections Ql, Qz at either end of the waveguide (the cross

sections of the unifoim waveguide junctions) are chosen

such that only the TE1O mode [Fig. 1(b) and (c)] can

excite the structure. In this case, the components of the

electromagnetic field versus the coordinate w are pro-

portional to cos ( (r/A) w), sin ( (T/A) w) [Fig. 1(b)]

or else are constant [Fig. 1 (c)].

3) The frequency band, the dimensions of the cross

sections Ql, Qa, and the shape of the physical transitions

are chosen such that higher modes (TE1l, TMw “”.

TEln, TMI., and TEZO . . . TE~,o, respectively) excited

inside the nonuniform structure can be neglected on

account of their aperiodic attenuation at Ql, Qz. Thus the

nonuniform structure is equivalent to a linear two-port.

If there is a shortcut in the cross section Qz, the structure

is equivalent to a linear one-port.

4) Losses in the nonuniform waveguide and the medium

are neglected. The medium is taken to be isotropic with a

dielectric constant e. and a permeability constant PO.

D. Basic Field Relationships

In the past, nonuniform waveguides of this type have

been analyzed in detail [2]–[4]. By the selection of the

Fig. 1. Fundamental structure of the nonun$or.m waveguide to be
synthesized and admissible excltatlone.
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particular fundamental structure and its excitation it is

possible to reduce the three-dimensional problem to a

two-dimensional problem by separation of the coordinate

w in Fig. 1 (a). The domain of definition of the reduced

wave equation is now the longitudinal section F. In order

to simplify the formulation of the boundary conditions, a

suitable’ curvilinear coordinate system is introduced in F.

This is performed by conformal mapping of the rectangular

F’ in the z plane to the longitudinal section F in the w

plane as shown in Fig. 2. In principle, the computation of

the complete electromagnetic field is now possible after

solving a general wave equation for a scalar function

@(xjy) :

a’o(x,y) a’~(x,y)

axz
+ ay’ + lo@ = o (1)

taking into account the simplified boundary conditions at

the limits of the domain of definition which is now For F’.

In (l),

(2)

for an excitation as shown in Fig. 1 (b), and

‘y = CIAopo (3)

for an excitation as shown in Fig. 1 (c).

The function j(x,y) describes the nonuniform structure

completely. Mathematically, j( Z,Y) is the deformation of

the infinitesimal area da’ when transferred to da (Fig. 2) :

da = f(z,y) da’. (4)

j(x,y) must satisfy the equation [1] ‘

a2[ln ( .f(xjy) )] + a2~n ( .f(z,y))] = o

3X2 aya
(5)

because the real and imaginary components of the cor-

responding conformal mapping function have to satisfy

the differential equations of Cauchy and Riemann.

If a uniform rectangular waveguide (longitudinal

section Ft, width A) is filled with a nonuniform medium

which, in case of an excitation corresponding to Fig. 1(b),

also @ an anisotropic medium, the same type of general

wave equation is obtained. Therefore, a physical inter-

pretation may also be given for ~(z,y) [2]-[4].

After, the general introduction to the fundamental

equations of the nonuniform waveguides, the mathe-

matical formalism for the process of synthesis itself must

be considered. In order to demonstrate the feasibility of

the method, only nonuniform waveguides with a relatively

simple behavior are treated in thk paper, such as reactive

one-ports or bandpasses [1].

8 B’

I

x. const z - @ane

Fig. 2. Introduction of a curvilinear coordinate system in the
characteristic longitudinal section F by conformal mapping.

II. FEASIBILITY OF THE METHOD FOR STRUCTURES WITH

SIMPLE ELECTROMAGNETIC BEHAVIOR

As shown in Section III, the problem is reduced to the

solution of an equivalent resonator problem, i.e., a non-

uniform waveguide resonator is developed for which a

certain set of resonance modes occur at desired frequencies

or eigenvalues {7P). Ideal short circuits or open circuits

at both ends of the nonuniform waveguide structure form

a resonator. Now the problem is to synthesize such

resonators. The starting point is a uniform waveguide with

a known resonance mode spectrum. The TEIOP modes are

of interest. The corresponding eigenvalues must be dis-

placed step by step towards the desired values. It is not

necessary to influence the higher order modes in the same

way because their effect on the behavior of the nonuniform
waveguide can be neglected in the considered frequency

band if the following conditions are satisfied.

1) A series expansion of the corresponding fields in the

cross sections Ql, Qa yields only small TE1O components.

2) The resonance frequencies corresponding to the

modes developed from the TEnl, TMln, and TEaOl modes,

respectively, are outside the considered frequency band.

The process of synthesis is only possible by means of a

computer because ten steps or more are required to get to

the desired nonuniform structure. A simplified iloMT chart

of the computer program is shown in Fig. 3.

A. Mathematical Formalism of the Process of Synthesis

Regarding (1) and the corresponding boundary con-

ditions which are now only of a Dirichlet or Neumann

type, a solution for an inverse eigenvalue problem must

be found which is the function f (x,y) derived from a

known set of eigenvalues {w,72 “ “” yfl~ ). To get to a linear

relationship between the incremental correction of the

eigenvalues and the changes of the longitudinal section

F~–l for each step i, it is necessary to consider neighboring

statuses i — 1, i for the functions which describe the

nonuniformities, the sets of corresponding eigenvalues,

and the systems of corresponding eigenfunctions:

fLl(LY) + fi(~,Y)

{l’i-l. pl+ {“t’i.p)

{4QSP} + {d%]> i=l,z...~m, p=l,2... pm.

(6)

From the general wave equation (1) the following ex-

pression can be derived for each function ji (x,y) :

J,+- a2%’y)-“o$’y))d”’
!)/=

7

I f~(%Y) @(x,Y) da’
l?l

~ = 1,2...&. (7)

It is well known that -y is a stationary value ~ = ~i,p

whenever @(z,y) is an eigenfunction ~; ,P(z,y). Therefore,

if the eigenfunction @i_l ,P(z,y) is used as a trial function,
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Fig. 3. Simplified flowchart of the computer program.
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p.+s–l

fi(w/) =fi-l(w)(l+ x WA)(WV)) (9)
~=o

where

fo(%v) =1

‘P(xy) ‘co’h[ %(’-:).

; = l,z...~m.

(-)2pfl

‘Os L’ z

is typical. The functions OP(z,y) satisfy the potential

equation.

For the computation of the unknown coefficients

dj,,P, both (8) and conditions of the form

/

Zl!t

Ti, f = [fL(w) 1’/2Id~I
20, $

(lo)

with
~ = 1,2. ..& t=l,. ..s

r~,l = Bi r;~,t = B ri,z = Li rim, z = L.*.

must be satisfied. In order to make sure that ji~ (xjy)

satisfies (5), (9) becomes

u .+s—1. .
.ft(x,y) = .fi-l(z,y) exp [ ~

p=il

Equation (11) is only correct for

pm+$—l

x V*,,%(W) <<1,
~=o

which means in the case of a small

b.ft,pep(z,y)]. (11)

in F( (12)

displacement of the

eigenvalues stepping on from i — 1 to i.

After the function .f~(x,~) has been obtained, it is

~, ,P is given with an error of second order:

J (

W$t-l,p(z,y)
4U!P(W) – ~z, –

)

a%j,–l,p (2,Y) ~c,

WI auz

. . .
necessary to compute the corresponding eigenfunctions

Ti,p C 7 2“ = 1,2. ..zm, p = 1,2... pm. (8)

/
ft(z,y)sj,-,,,’( x,~) da’

j’t

If the function j, (xly) were known (case of analysis),

(8) yields a very good approximation for the exact eigen-

value. Vice versa, if a set of eigenvalues is required (case

of synthesis), (8) can be considered as a functional

equation for the computation of the unknown function

f,(x,y).
To get a system of linear equations, a suitable series

expansion for f ~(z,y) is needed with a definite number of

free parameters or coefficients. First, this series expansion

must satisfy (5) . Further, it must result in a smooth

transition to the cross section of the homogeneous wave-

guide junctions at the ends of the nonuniform waveguide.

Finally, a number .s of free parameters must be reserved,

to get, for instance, a resonator with a certain length L

and a certain height B at the ends or at half-length.

For the computation off, (x)y) an expression

{O,,, ) because they are needed for the computation of

fi+l (*,!/). That may be done by usipg variational tech-
niques (method of Ritz) which means utilizing the

stationary character ~f y in (7) when @( x,y) is an eigen-

function. Double Fourier series which satisfy the boundary

conditions are introduced in (7). The derivations with

respect to the unknown coefficients of the Fourier series

lead to a matrix eigenvalue problem. A solution is found

by the method of Wielandt [5] utilizing the fact that the

eigenfunctions {&-l,P } and eigenvalues {y,_l,P } are good

approximations.

To get the outline of the final longitudinal se@ion

F;~l only a solution of an ordinary first-order differential

equation for a certain initial value must be found. A

modified method of Eule&Cauchy is used [5].

A computer program (ALGOL) containing the formalism
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described in

results.

this section was written to obtain numerical

III. NUMERICAL RESULTS

An excitation of the nonuniform structure is assumed

only as shown in Fig. 1(b). In order to save computer

time and computer storage, only structures with a par-’

titular symmetry as shown in Fig. 2 were synthesized.

In that case, the matrix equation of the eigenvalue prob-

lem is split up into four matrix equations (two of which are

needed). The order of the matrices is thus reduced to a

quarter of the original. The regions of integration in

(7) and (8) are also reduced to a quarter. The conditions

as in (10) may or may not be predefine.

The method was tested with a great number of ex-

amples. A great deal of experiences were gathered. The

results were checked by methods given in literature or by

actual measurements. The results were found to be in good

agreement.

On account of the chosen series expansion for $i(z,y) it

was not possible to influence the eigenvalues of the same

order for the open- and the short-circuit case inde-

pefidently of one another. In this case, a singular matrix
was obtaified, when the coefficients ~fi,p should be com-

puted. In the same way, for some examples when both

height B and length L of the longitudinal section F were

preset, the method dld not yield meaningful results. With

length L as a free parameter, the process of synthesis was

successful. There were no problems with a poor con-

vergence of the eigenfunctions because the nonuniformity

is always continuous. The nonuniformity y is very critical

if the longitudinal section F shows a tight pinch. In this

case, the conformal mapping of the outline of the rec-

tangular F’ to the outline of the longitudinal section F

automatically produces a great number of points in the

critical region as shown in Fig. 4. On the other hand, it

could also be observed that the conformal mapping was not

unique for other examples of this type. The outliie de-

scribed a noose, which could be avoided by reducing the

B/L ratio.

Now some characteristic examples are presented. In

order to differentiate the eigenvalues in the short-circuit

case and in the open-circuit case the letters K and L

are used, respectively, instead of y. Longitudinal sections

shown are not in full scale.

At first, resonators were synthesized without thinking

of their application. Examples where two, four, and six

eigenvalues of the short-circuit case were desired could be

treated successfully.
Fig. 5 shows the step by step approximation of a par-

ticular longitudinal section F. In this case, certain values

for only two eigenvalues K1 and K2 are desired. The

initial values for K1 and K2 correspond to the TE101

and TE102 resonances, respectively, of the uniform wave-

ggide resonator with the longitudinal section F’. For

K1 and K2 a displacement of –45 and +30 percent,

respectively, was required. In Fig. 6 the step by step ap-

proximation of the desired eigenvalues is shown. In

Table I at first the desired incremental displacements in

percent are given for each step and then the corresponding

errors in percent when the desired eigenvalues are com-

pared with the real (computed) eigenvalues of the new

structure. These errors are always much smaller than the

desired displacements. In this example, at first the eigen-

value K1 and then the eigenvalue K2 was displaced. This

—.

t“- 1–“–”–-–-~”i”–‘“–”–”– ‘“ ‘~

Fig. 5. Step by step approximation of a characteristic longitudhal
section F.

!
nkni

01’23L 5678 9mlllz131L15
* _~ *tep ,

Fig. 6. Step by step approximation of the desired eigenvalues.

TABLE I
ACCURACY OF THE METHOD DWRING THE STEP BY STEP

ApPROXIMATION

L
LIz

MV

XI(J

Fig. 4. Correlation of points on the outlines of F’ and F by the
conformal mapping.

I stop i
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Fig. 7. Fundamental structure of a waveguide resonator for the
synthesis of a reactive waveguide one-port.
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Fig. 9. Step by step approximation of the resonance spectrum of
a bandpass filter.

be modeled in a waveguide one-port. For a given LH

and A [compare (2)] taken to be infinite, the eigenvalues

K1 . . . K4 of the desired resonator are obtained by means

of the dashed curves in Fig. 8(a).

The resonance conditions are

()LH
;. = cot Do—

2
and z, =

()
– tan @o* . (13)

In that way, the function & desired is obtained at dis-

crete frequencies corresponding to the eigenvalues K1 s..

K4. The density of the discrete frequencies depends on the

length 5H. Here, a series expansion somewhat modified

as compared to (9) was used. A structure as shown in

Fig. 8(c) was obtained. The electrical equivalent circuit

t
s, of thk structure agrees with the network in Fig. 8(b).

--i A nonuniform waveguide one-port with the same longi-

* -Lf=@k===.%tudinal section was built and the input reactance & was

.F Ye
Ib I

1 measured. The relative agreement with the curve requiredl

~e is very good for lower frequencies, where the effect of

I.-1 higher modes (TE1l, TNI1l) in the plane of definition of

A L I 0

[b] ,-,

Fig. 8. Example for the synthesis of a reactive waveguide one-port.

~my~.&3 ~~2Z~~ = 0.30Qf/j,v cm-’; ZL = B. 12070; LH = 13.12

is a method to avoid a singularity when a particular

length L and height B is required.

Example two is the synthesis of a reactive waveguide

one-port. In principle, a waveguide resonator as seen in

Fig. 7 had to be synthesized. The identical nonuniform

structures at both ends are the desired one-ports which

are connected by a uniform waveguide (propagation

constant @o, characteristic impedance ZL, width A,

length LH) to obtain a resonator which will be computed

as previously explained.

The solid curve in Fig. S(a) shows the normalized input

reactance & of a network corresponding to Fig. 8(b) to

i. can be neglected. The conversion of the results to the

values shown in Fig. 8(a) was performed by a simple

frequency transformation which can be derived from (2) :

().fA+.’=.fA2– -+2.Le. ~oPo
(14)

Example three is the synthesis of a bandpass filter,

In Fig. 9, the gradual approximation of the desiredl

resonance spectrum is shown. At first, eigenvalues of the

same order for the open- and short-circuit case agree,
For special symmetrical structures, the following rule is

valid [1]. Where the eigenvalues of the same order stay to-

gether (Kl, L1 and K3, L3), a passband is obtained, where

they diverge (K2, L2 and K4, L4), a stopband is obtained.

The structure which belongs to the desired values can be

seen in Fig. 10. It is comparable with a capacitive-iris
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F

+-. .-.–----’–.-’–t -“-”--–”-”–”—”—”

Fig. 10. Characteristic longitudinal section F of the bandpass
filter developed.

coupled waveguide filter. At this example, it turned out

that it was not possible to influence the eigenvalues of the

same order for the open- and short-circuit case inde-

pendently of one another. Therefore, they were influenced

alternately.

The structure shown in Fig. 10 was analyzed by means

of a stepped waveguide using formulas given in [6]. The

location of the passbands was in very good agreement with

the required values.

In the same way as just described, low passes and high

passes were synthesized.

IV. CONCLUSION

A general principle for synthesi~ing nonuniform wave-

guides with desired properties was described. The method

is an iterative one. The application of the method was de-

scribed for one kind of nonuniform waveguide with

rectangular cross section and excited by a TEIO mode.

Simple examples have proved the feasibility of the method.

Some experience for a successful adaptation of the method

were given. In general, the method can be adapted to more

complicated problems, e.g., matching problems. A cor-

responding computer program is under test.
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Short Papers

Tabulation of Methods for the Numerical Solution of the

Hollow Waveguide Problem

FOOK LOY NG

Abstract—A comparison of methods for the numerical solution
of the hollow waveguide problem is presented in tabular form.
Another table lists waveguide shapes and their cutpff characteristics
that have been presented in the literature. These tables and the
bibliography affo;d ~ aid towards the selection of a method.

INTRODUCTION

Consider a uniform waveguide with ~erfectlv conducting walls.
For the propagation of mo~ochromatic- electro-magnetic w&es in-

side the waveguide, Maxwell’s equati?ns reduce to the two-dimen-
sional Helmhaltz equation [1, sect. 8.1].

All analyses of the hollow waveguide problem are attempts at
solving, exactly or approximately, the Helmholtz equation subject
to the imposed Dirichlet or Neumann boundary conditions for
E modes (TM) or H modes (TE), respectively [1, ch. 8].
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Many numerical methods have been proposed and used for the

solution of the waveguide problem. A commentary on and com-

parison of the methods together with relevant references are given in

this short paper. A table of the methods and their chief characteristics

are presented for convenient reference. Another table is given listing
the waveguide shapes that have been treated in the literature. ThB
is provided as a handy reference of shapes that can be used for the
testing of any numerical method. This short paper is a condensed
version of an earlier publication appearing in a journal with limited
circulation [2].

A general introduction to numerical techniques and a review of
finite difference and variational techniques for electromagnetic

problems are given by Wexler [3]. A review of some current numer-
ical methods for the solution of the waveguide problem is given by
Davies [4], and he establishes certain criteria as a basis for com-

parison of the various methods.

COMPARISON or METHODS

Waveguide shapes can be classified [5] into the three basic types
shown in Fig. 1.

In general, type 3 is the most troublesome computationally
because of the singular behavior of the field at the reentrant corners
[6, sect. 9.2]. Most of the methods either suffer from a slower
convergence rate or do not produce reliable results for th~ type of
shape.

The methods that have been used are compared in Table I.

Some criteria established by Davies [4] for the comparison of


